Improved MRAS based speed estimation for a vector controlled switched reluctance motor drive (2024)

Home> > IET Electric Power Applications> Volume 14, Issue 11> Article

  • Author(s):Yawer Abbas Khan 1andVimlesh Verma 1
    • View affiliations
    • Affiliations: 1:Department of Electrical Engineering , National Institute of Technology Patna , Patna , India
  • Source: Volume 14, Issue 11,November2020, p.2212 – 2221
    DOI:10.1049/iet-epa.2020.0277,Print ISSN 1751-8660,Online ISSN 1751-8679
  • « Previous Article
  • Table of contents
  • Next Article »

© The Institution of Engineering and Technology

Received27/04/2020,Accepted 07/07/2020,Revised 23/06/2020,Published 17/07/2020

  • Article
  • References (39)
  • Cited By (0)
  • Supplementary material (0)
  • Keywords
  • Related Content

This study deals with the unipolar excitation-based speed sensorless vector controlled switched reluctance motor drive. For speed sensorless operation, Z-MRAS (Z-model reference adaptive system) based speed estimator is proposed where ‘Z’ is a fictitious quantity. This novel structure is completely independent of the stator resistance and DC component of self-inductance. Also, in the formulation, integrator and differentiator terms are absent. The proposed formulation is perceived as stable in the entire four-quadrant zone of operation. Detailed stability and sensitivity analysis has been carried out for the proposed estimation scheme. The practicality of the proposed formulation is confirmed through simulation in MATLAB/SIMULINK platform and by carrying out the experimentation on a dSPACE-1104 based prototype.

Inspec keywords: machine control;model reference adaptive control systems;machine vector control;rotors;angular velocity control;induction motor drives;stators;sensorless machine control;reluctance motor drives

Other keywords: reference adaptive system;vector controlled;differentiator terms;DC component;unipolar excitation-based speed;improved MRAS based speed estimation;dSPACE-1104 based prototype;fictitious quantity;reluctance motor drive;speed sensorless operation;estimation scheme;stator resistance;sensitivity analysis

Subjects:Velocity, acceleration and rotation control;Asynchronous machines;Control of electric power systems;Drives;Synchronous machines;Self-adjusting control systems

References

    1. 1)
      • 13. Cai, J., Deng, Z.: ‘Initial rotor position estimation and sensorless control of SRM based on coordinate transformation’, IEEE Trans. Instr. Meas., 2015, 64, (4), pp. 10041018.

    2. 2)
      • 27. Brosse, A., Henneberger, G.: ‘Sensorless control of a switched reluctance motor using a Kalman filter’. 7th European Conf. on Power Electronics and Applications, Trondheim, Norway/EPE Association. 4 September 1997, pp. 45614566.

    3. 3)
      • 3. Ehsani, M., Fahimi, B.: ‘Elimination of position sensors in switched reluctance motor drives: state of the art and future trends’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 4047.

    4. 4)
      • 6. Bass, J.T., Ehsani, M., Miller, T.J.: ‘Robust torque control of switched reluctance motors without a shaft position sensor’, IEEE Trans. Ind. Electron., 1986, 33, (3), pp. 212216.

    5. 5)
      • 16. Lumsdaine, A., Lang, J.H.: ‘State observers for Variable reluctance motors’, IEEE Trans. Ind. Electron., 1990, 37, (2), pp. 133142.

    6. 6)
      • 9. Harris, W.D., Lang, J.H.: ‘A simple motion estimator for variable-reluctance motors’, IEEE Trans. Ind. Electron., 1990, 26, (2), pp. 237243.

    7. 7)
      • 32. Nakao, N., Akatsu, K.: ‘Vector control for switched reluctance motor drives using an improved current controller’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA., September 2014, pp. 13791386.

    8. 8)
      • 26. Khalil, A., Husain, I., Hossain, S.A., et al: ‘A hybrid sensorless SRM drive with eight- and six-switch converter topologies’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 16471655.

    9. 9)
      • 37. Lu, L.Y., Avila, N.F., Chu, C.C., et al: ‘Model reference adaptive back-electromotive-force estimators for sensorless control of grid- connected DFIGs’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 17011711.

    10. 10)
      • 25. McCann, R.A., Islam, M.S., Husain, I.: ‘Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives’, IEEE Trans. Ind. Appl., 2001, 37, (1), pp. 5158.

    11. 11)
      • 2. Haghbin, S., Rabiei, A., Grunditz, E.: ‘Switched reluctance motor in electric or hybrid vehicle applications: A status review’. IEEE Conf. on industrial electronics and applications (ICIEA), Melbourne, VIC, Australia, June 2013, pp. 117122.

    12. 12)
      • 5. Frus, J.R., Kuo, B.C.: ‘Closed-loop control of step motors without feedback encoders’. proc. Fifth annual symp. on incremental motion control systems and devices, Urbana, Illinois, May 1976, pp. 111.

    13. 13)
      • 18. Gallegos-Lopez, G., Kjaer, P.C., Miller, T.J.: ‘A new sensorless method for switched reluctance motor drives’, IEEE Trans. Ind. Appl., 1998, 34, (4), pp. 832840.

    14. 14)
      • 36. Teja, A.R., Verma, V., Chakraborty, C.: ‘A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 859869.

    15. 15)
      • 28. Paramasivam, S., Vijayan, S., Vasudevan, M., et al: ‘Real-time verification of AI based rotor position estimation techniques for a 6/4 pole SRM drive’, IEEE Trans. Magn., 2007, 43, (7), pp. 32093222.

    16. 16)
      • 33. Nagel, N.J., Lorenz, R.D.: ‘Rotating vector methods for smooth torque control of a switched reluctance motor drive’, IEEE Trans. Ind. Appl., 2000, 36, (2), pp. 540548.

    17. 17)
      • 7. Perl, T., Husain, I., Elbuluk, M.: ‘Design trends and trade-offs for sensorless operation of SRM drives’. IEEE IAS Annual Meeting, Orlando, FL, USA, USA, October 1995, pp. 278285.

    18. 18)
      • 22. Zeng, W., Liu, C., Zhou, Q., et al: ‘A new flux/current method for SRM rotor position estimation’. IEEE Conf. on Electrical Machines and Systems, Tokyo, Japan, November 2009, pp. 16.

    19. 19)
      • 21. Gallegos-Lopez, G., Kjaer, P.C., Miller, T.J.E.: ‘High-grade position model’, IEEE Trans. Ind. Appl., 1999, 35, (4), pp. 859869.

    20. 20)
      • 14. Cai, J., Liu, Z., Zeng, Y.: ‘Aligned position estimation-based fault-tolerant sensorless control strategy for SRM drives’, IEEE Trans. Power Electron., 2018, 34, (8), pp. 77547762.

    21. 21)
      • 4. Krishnan, R.: ‘Switched reluctance motor drives-modeling, simulation, analysis, design, and applications’ (University Press, India, 2008, 2001), pp. 374407.

    22. 22)
      • 39. Kumar, R., Das, S., Chattopadhyay, A.K.: ‘Comparative assessment of two different model reference adaptive system schemes for speed- sensorless control of induction motor drives’. IET Electr. Power Appl., 2016, 10, (2), pp. 141154.

    23. 23)
      • 1. Radun, A.V.: ‘High-power density switched reluctance motor drive for aerospace applications’, IEEE Trans. Ind. Appl., 1992, 28, (1), pp. 113119.

    24. 24)
      • 8. Khan, Y.A., Verma, V.: ‘A novel speed estimation technique for a vector controlled switched reluctance motor drive’, IET Electr. Power Appl., 2019, 13, (8), pp. 11931203.

    25. 25)
      • 10. Acarnley, P.P., Hill, R.J., Hooper, C.W.: ‘Detection of rotor position in stepping and switched motors by monitoring of current waveform’, IEEE Trans. Ind. Electron., 1985, 32, (3), pp. 215222.

    26. 26)
      • 15. Peng, F., Ye, J., Emadi, A., et al: ‘Position sensorless control of switched reluctance motor drives based on numerical method’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 21592168.

    27. 27)
      • 19. Song, S., Zhang, M., Ge, L.: ‘A new fast method for obtaining flux-linkage characteristics of SRM’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 41054117.

    28. 28)
      • 29. Ertugrul, N., Cheok, A.D.: ‘Indirect angle estimation in SRM drive using fuzzy logic-based motor model’, IEEE Trans. Power Electron., 2000, 15, (6), pp. 10291044.

    29. 29)
      • 24. Husain, I., Ehsani, M.: ‘Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages’, IEEE Trans. Ind. Appl., 1994, 30, (3), pp. 665672.

    30. 30)
      • 31. Nakao, N., Akatsu, K.: ‘Vector control specialized for switched reluctance motor drives’. Int. Conf. on Electrical Machines (ICEM 2014), Berlin, Germany, September 2014, pp. 943949.

    31. 31)
      • 34. Khan, Y.A., Verma, V.: ‘A novel method of estimating stator resistance for an F-MRAS based speed sensorless vector controlled switched reluctance motor drive’. 54th Int. Universities Power Engineering Conf. (UPEC), Bucharest, Romania, 2019, pp. 16.

    32. 32)
      • 20. MacMinn, S.R., Rzesos, W.J., Szczesny, P.M., et al: ‘Application of sensor integration techniques to switched reluctance motor drives’, IEEE Trans. Ind. Appl., 1992, 28, (6), pp. 13391344.

    33. 33)
      • 17. Tang, Y., He, Y., Wang, F., et al: ‘Back-EMF-based sensorless control system of hybrid SRM for high-speed operation’, IET Electr. Power Appl., 2018, 12, (6), pp. 867873.

    34. 34)
      • 35. Khan, Y.A., Verma, V.: ‘Investigation of Pn and F-MRAS based speed estimators for vector controlled switched reluctance motor drive’. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), IIT Madras, Chennai, India, December 2018, pp. 16.

    35. 35)
      • 23. Panda, S.K., Amaratunga, G.A.J.: ‘Waveform detection technique for indirect rotor position sensing of SRM drives. Part 1. Anal’, IEE Proc. B, 1993, 140, (1), pp. 8088.

    36. 36)
      • 30. Khan, Y.A., Verma, V.: ‘F-MRAS based speed sensorless vector controlled switched reluctance motor drive’. IEEE, 2nd Int. Conf. on Energy, Power and Environment, Shillong, India, June 2018, pp. 16.

    37. 37)
      • 12. Ehsani, M., Husain, I., Mahajan, S., et al: ‘New modulation encoding techniques for rotor position sensing in switched reluctance motors’, IEEE Trans. Ind. Appl., 1994, 30, (1), pp. 8591.

    38. 38)
      • 38. Khlaief, A., Boussak, M., Chaari, A.: ‘A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive’, Electr. Power Syst. Res., 2013, 108, pp. 115.

    39. 39)
      • 11. Mvungi, N.H., Lahoud, M.A., Stephenson, J.M.: ‘A new sensorless position detector for SR drives’. 5th Int. Conf. on Power Electronics and Variable Speed Drives, London, UK, July 1990, pp. 249252.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0277

Improved MRAS based speed estimation for a vector controlled switched reluctance motor drive (2)

Related content

content/journals/10.1049/iet-epa.2020.0277

pub_keyword,iet_inspecKeyword,pub_concept

6

6

Improved MRAS based speed estimation for a vector controlled switched reluctance motor drive (3)

Improved MRAS based speed estimation for a vector controlled switched reluctance motor drive (2024)

References

Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 5589

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.